Home
Class 12
MATHS
Show that, matrix A={:[(2,-3),(3,4)]:} s...

Show that, matrix `A={:[(2,-3),(3,4)]:}` satisfies the equation `A^(2)-6A+17=0.` Hence find `A^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
`1/17{:[(4,3),(-3,2)]:}`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the matrix A= [(2,-3),(3,4)] satisfies the equation x^(2) - 6x + 17 = 0. Hence find A^(-1)

Show that the matrix A=({:(2,-3),(3,4):}) satisfies the equation A^(2)-6A+17I=O and hence find A^(-1) where I is the identity matrix and O is the null matrix of order 2 times 2 .

Show that the matrix A = {:[( 2,3),( 1,2) ]:} satisfies equation A^(2) -4A +I=0 where is 2xx2 identity matrix and O is 2xx2 Zero matrix. Using this equation, Find A^(-1)

If the matrix A = [(1,2),(3,4)] satisfies the equation A^(2) = 5A + 2I . Then, find the value of A^-1 .

Show that the matrix A=[[1,2,2],[2,1,2],[2,2,1]] satisfies the equation A^2-4A-5I_3=O and hence find A^(-1)

Show that, the matrix A = [(1,2,2),(2,1,2),(2,2,1)] satisfies the equation A^(2) - 4A - 5I_(3) = 0 and hence find A^(-1) .

If matrix A satisfies the equation A^2+5A+6I=0 then A^3 is

If A=({:(2,-1),(1,3):}) , then show that A^2-5A+7I_2=0 : hence find A^(-1) .

If A= {:[( 3,1),( -1,2) ]:} Show that A^(2) -5A +7I =O.Hence find A^(-1)

A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +11 I =O. Hence , find A^(-1)