Home
Class 12
MATHS
A matrix A=[a(ij)](mxxn)is........

A matrix `A=[a_(ij)]_(mxxn)is.....`

A

a horizontal matrix if `mgtn`

B

a horizontal matrix if `mltn`

C

a vertical matrix if `mgtn`

D

a vertical matrix if `mltn`

Text Solution

Verified by Experts

The correct Answer is:
B,C
Promotional Banner

Similar Questions

Explore conceptually related problems

If matrix A=[a_(ij)]_(3xx3) , matrix B=[b_(ij)]_(3xx3) , where a_(ij)+a_(ji)=0 and b_(ij)-b_(ji)=0 AA i , j , then A^(4)*B^(3) is

Statement 1: The inverse of singular matrix A=([a_(i j)])_(nxxn), \ w h e r e \ a_(i j)=0,igeqj \ i s \ B=([a i j^-1])_(nxxn) . Statement 2: The inverse of singular square matrix does not exist.

Show that : The determinant of a matrix A=([a_(i j)])_(5xx5) where a_(i j)+a_(j i)=0 for all i and j is zero.

Let A be a 3xx3 matrix given by A=(a_(ij))_(3xx3) . If for every column vector X satisfies X'AX=0 and a_(12)=2008 , a_(13)=2010 and a_(23)=-2012 . Then the value of a_(21)+a_(31)+a_(32)=

If a matrix A = (alpha_(i_j))_(3xx4) and alpha(i_j) = (-1)^(hati + hatj) , then the element fo 3rd row and 2nd column will be

construct 2xx2 matrix if A=[a_(ij)] whose elements a_(ij) are given by : (i-j)^2/2

Construct a 2xx2 matrix, A=[a_(ij)] , whose elements are given by: (i) a_(ij)=((i+j)^(2))/(2) (ii) a_(ij)=(i)/(j) (iii) a_(ij)=((i+2j)^(2))/(2)

Consider a matrix A=[a_("ij")] of order 3xx3 such that a_("ij")=(k)^(i+j) where k in I . Match List I with List II and select the correct answer using the codes given below the lists.

A=[a_(ij)]_(mxxn) is a square matrix, if

Let A=[a_(ij)]_(m×n) is defined by a_(ij)=i+j . Then the sum of all the elements of the matrix is