Home
Class 12
MATHS
With the help of definite integral find ...

With the help of definite integral find the value of
`underset(ntooo)lim{(1+(1)/(n))(1+(2)/(n))...(1+(n)/(n))}^((1)/(n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of underset(n to oo)lim((n!)^((1)/(n)))/(n) is -

Evaluate : underset(n to oo)lim(n)/((n!)^((1)/(n)))

Evaluate : underset(n to oo) lim[(1+(1)/(n))(1+(2)/(n))(1+(3)/(n))…(1+(n)/(n))]^((1)/(n))

Evaluate (with the help of definite integral) : underset(n to oo)lim[(1)/(sqrt(n))+(1)/(sqrt(2n))+(1)/(sqrt(3n))+…+(1)/(n)]

underset(n to oo)lim(((n+1)(n+2)...3n)/(n^(2n)))^((1)/(n)) is equal to

Evaluate : underset(n to oo) lim[(1)/(n)+(1)/(n+1)+(1)/(n+2)+…+(1)/(4n)]

Evaluate : underset(n to oo) lim[(1)/(n)+(1)/(n+1)+(1)/(n+2)+…+(1)/(3n)]

Evaluate : underset(n to oo)lim [((2n)!)/(n!n^(n))]^((1)/(n))

The value of underset(n to oo)lim[(sqrt(n+1)+sqrt(n+2)+…+sqrt(2n-1))/(n^((3)/(2)))]

Evaluate (with the help of definite integral): underset(n rarr infty)lim{(1+1/n)(1+2/n)…(1+n/n)}^(1/n)