Home
Class 12
MATHS
If x=acos^(3)theta" and "y=bsin^(3)theta...

If `x=acos^(3)theta" and "y=bsin^(3)theta`, then find `(d^(2)y)/(dx^(2))` at `theta=(pi)/(4).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=acos^3theta,y=a sin^3theta, then find the value of (d^2y)/(dx^2) at θ=π/6

If x=a sec^(2)theta and y=a tan^(3) theta, " find " (dy)/(dx)" at " theta=(pi)/(4) .

If x=2cos theta -cos2 theta and y=2sin theta -sin2 theta , find (d^2y)/(dx^2) at theta=pi/2 .

If x=a cos^(4)theta, y=a sin^(4)theta then the value of (dy)/(dx) at theta=(3pi)/(4) is -

If x=sqrt(3)(3 sin theta+sin 3theta), y=sqrt(3)(3 sin theta+cos 3 theta) , find (d^(2)y)/(dx^(2)) at theta=(pi)/(3) .

If x=a cot theta and y=(1)/(x^(2)+a^(2)) , then the value of (d^(2)y)/(dx^(2)) at theta=(pi)/(6) is -

If x=2 cos theta-cos 2 theta and y=2 sin theta-sin 2 theta , then the value of (d^(2)y)/(dx^(2)) at theta=(pi)/(2) is -

If x=acos^3theta,y=bsin^3theta ,fin d (d^3y)/(dx^3) at theta=0.

If x=asec^3theta and y=atan^3theta , find (dy)/(dx) at theta=pi/3dot

If x=-a cos theta and y= a sin theta , find (dy)/(dx) .