Home
Class 12
MATHS
If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)...

If `x^(2)+y^(2)=t+(1)/(t)` and `x^(4)+y^(4)=t^(2)+(1)/(t^(2))` then show that `(dy)/(dx)=-(y)/(x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=t-(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , show that, x^(3)y(dy)/(dx)=1

If x^(2)+y^(2)=t+(1)/(t) and x^(4)+y^(4)=t^(2)+(1)/(t^(2)) , then the value of -x^(3)y(dy)/(dx) is -

If x^2 = a^(sin^(-1)t) and y^2= a^(cos^(-1)t) then show that (dy)/(dx)=-y/x .

If x=sqrt(a^(sin^(-1)t)" and "y=sqrt(a^(cos^(-1)t) show that (dy)/(dx)=-(y)/(x) .

If x^2+y^2= t-1/t and x^4+y^4 = t^2+1/t^2 ,show that , x^3y (dy)/(dx) = 1 .

If x^2+y^2=t+1/t and x^4+y^4=t^2+1/t^2 then (dy)/(dx)=

If x=sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x) .

If x= e^(cos2t) and y = e^(sin2t) , then move that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=(sin^(3)t)/(sqrt(cos 2t)) and y=(cos^(3)t)/( sqrt(cos 2t)) , show that (dy)/(dx)=0 at t=(pi)/(6) .

If x^2+y^2=t-1/t and x^4+y^4=t^2+1/t^2, then x^3y (dy)/(dx)= (a) 0 (b) 1 (c) -1 (d) none of these