Home
Class 12
MATHS
If f(x)={{:(sinx" when "-(pi)/(2)ltxlt(p...

If `f(x)={{:(sinx" when "-(pi)/(2)ltxlt(pi)/(2)),(|cosx-2|" otherwise"):}` then find the value of `int_(0)^(pi)f(x)dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(2pi)|sinx|dx .

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

f(x)=sinx+int_(-pi//2)^(pi//2)(sinx+tcosx)f(t)dt The value of int_(0)^(pi//2) f(x)dx is

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

Find the value of the integral is int_(0)^(pi) x log sinx dx

Let f(x)={{:(-2sinx" if "xle-(pi)/(2)),(Asinx+B" if "-(pi)/2ltxlt(pi)/(2)),(cosx" if " xge(pi)/(2)):} . Then

Fill in the blank : The value of int_(-(pi)/(2))^((pi)/(2))|sinx|dx is

Evaluate : int_(-(pi)/(2))^((pi)/(2))|sinx|dx

Let f(x)=|(2cos^2x,sin2x,-sinx),(sin2x,2sin^2x,cosx),(sinx,-cosx,0)| . Then the value of int_0^(pi//2)[f(x)+f^(prime)(x)]dx is a. pi b. pi//2 c. 2pi d. 3pi//2

The value of the integral int_(0)^((pi)/(2))|sinx-cosx|dx is -