Home
Class 12
MATHS
In a certain culture of bacteria, the ra...

In a certain culture of bacteria, the rate of increase of its number is equal to half of the number present at that moment. When the number of bacteria will be double of its initial number? (Given `log_(e)2=0.693`)

Promotional Banner

Similar Questions

Explore conceptually related problems

In a certain culture the rate of increment of bacterial at any instant is proportional to the cube root of the number of bacteria present at that instant. IF the number of bacteria becomes 8 times in 3 hours, in how much time that number becomes 64 times?

In a certain culture the rate of increment of bactreria at any instant is proportional to the cube root of the number of bacteria present at that instant. If the number of becteria becomes 8 times hours, in how much time that number becomes 64 times?

The number of digits in 20^(301) (given log_(10)2=0.3010) is

In a certain culture, the number of bacteria at any instant increases at a rate proportional to the square root of the number present at that instant. If the number becomes 16 times in 5 hours, when the number will be 49 times?

In a certain culture, the number of bacteria at any instant increases at a rate proportional to the cube root of the number present at that instant. If the number becomes 8 times in 3 hours, when the number will be 64 times?

In a certain culture the number of bacteria at any instant increases at a rate proportional to the cube root of the number present at that instant. If the number becomes 8 times in 3 hours, when the number will be 64 times?

The initial number of radioactive atoms in a radioactive sample is N_0 . If after time t the number of becomes N, then N=N_0e^(-lambdat) , where lambda is known as the decay constant of the element. The time in which the number of radioactive atoms becomes half of its initial number is called the half-life (T) of the element. The time in which the number of atoms falls to 1/e times of its initial number is the mean life (tau) of the element. The product lambdaN is the activity (A) of the radioactive sample when the number of atoms is N. The SI unit of activity is bequerel (Bq)' where 1 Bq = 1 decay. s^(-1) , The half-life of Iodine-131 is 8d. Its decay constant (in SI) is - (A) 10^(-6) (B) 1.45xx10^(-6) (C) 2xx10^(-6) (D) 2.9xx10^(-6)

The initial number of radioactive atoms in a radioactive sample is N_0 . If after time t the number of becomes N, then N=N_0e^(-lambdat) , where lambda is known as the decay constant of the element. The time in which the number of radioactive atoms becomes half of its initial number is called the half-life (T) of the element. The time in which the number of atoms falls to 1/e times of its initial number is the mean life (tau) of the element. The product lambdaN is the activity (A) of the radioactive sample when the number of atoms is N. The SI unit of activity is bequerel (Bq)' where 1 Bq= 1 decay. s^(-1) . After how many days the activity of Iodine-131 will be 1/16 th of its initial value. [The half-life of Iodine-131 is 8 d.] (A) 24 d (B) 32 d (C) 40 d (D) 48 d

The initial number of radioactive atoms in a radioactive sample is N_0 . If after time t the number of becomes N, then N=N_0e^(-lambdat) , where lambda is known as the decay constant of the element. The time in which the number of radioactive atoms becomes half of its initial number is called the half-life (T) of the element. The time in which the number of atoms falls to 1/e times of its initial number is the mean life (tau) of the element. The product lambdaN is the activity (A) of the radioactive sample when the number of atoms is N. The SI unit of activity is bequerel (Bq)' where 1 Bq = 1 decay. s^(-1) . The half-life of Iodine-131 is 8 d. Its mean life (in SI) is - (A) 4.79xx10^5 s. (B) 6.912xx10^5 s. (C) 9.974 xx 10^5 s. (D) 22.96xx10^5 s.

The initial number of radioactive atoms in a radioactive sample is N_0 . If after time t the number of becomes N, then N=N_0e^(-lambdat) , where lambda is known as the decay constant of the element. The time in which the number of radioactive atoms becomes half of its initial number is called the half-life (T) of the element. The time in which the number of atoms falls to 1/e times of its initial number is the mean life (tau) of the element. The product lambdaN is the activity (A) of the radioactive sample when the number of atoms is N. The SI unit of activity is bequerel (Bq)' where 1 Bq = 1 decay. s^(-1) , and Avogadro's number, N=6.023xx10^23 What is the ratio of activity of same amount of sodium-24 to that of iodine-131? [half life of sodium-24 is 15h.] (A) 1/70 (B) 1/7 (C) 7 (D) 70