Home
Class 12
MATHS
If f(x)=|x-1|+|x+1|, then evaluate int(-...

If `f(x)=|x-1|+|x+1|`, then evaluate `int_(-2)^(2)f(x)dx`.

Text Solution

Verified by Experts

The correct Answer is:
10
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(|x-2|+|x-4|) , then evaluate int_(1)^(4)f(x)dx .

If f(x)=|x-1| , then the value of int_(0)^(2)f(x) dx is -

Evaluate: int_(-1)^1log((2-x)/(2+x))dx

Let y=f(x)=4x^(3)+2x-6 , then the value of int_(0)^(2)f(x)dx+int_(0)^(30)f^(-1)(y)dy is equal to _________.

If f(2a-x)=-f(x) , then show that, int_(0)^(2a)f(x)dx=0

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(agt0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

If int_(-1)^(4)f(x)dx=4 and int_(2)^(4){3-f(x)}dx=7 then the value of int_(-1)^(2)f(x)dx is

If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), then find the value of int_(-3)^5g(x)dx .