Home
Class 12
MATHS
Which of the following relations is sati...

Which of the following relations is satisfied by the function `f(x)=int_(1)^(x)(dt)/(t)` ?

A

`f(x+y)=f(x)+f(y)`

B

`f((x)/(y))=f(x)-f(y)`

C

`f(xy)=f(x)f(y)`

D

`f((x)/(y))=(f(x))/(f(y))`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

In -4 lt x lt 4 , the function f(x)= int_(-10)^(x) (t^(4)-4)e^(-4t) dt has-

A minimum value of the function f(x) = int_(0)^(x) te^(-t^(2))dt is-

A Function f(x) satisfies the relation f(x)=e^x+int_0^1e^xf(t)dtdot Then (a) f(0) 0

If f(t) is an odd function, then int_(0)^(x)f(t) dt is -

The function f(x) =int_0^xsqrt(1-t^4) dt is such that

The points of extrema of the function f(x)= int_(0)^(x)(sin t)/(t)dt in the domain x gt 0 are-

Investigate for maxima and minima of the function f(x) =int_(1)^(x)[2(t-1)(t-2)^(3)+3(t-1)^(2)(t-2)^(2)]dt .

Investigate for the maxima and minima of the function f(x)=int_1^x[2(t-1)(t-2)^3+3(t-1)^2(t-2)^2]dt

If f(x)=int_0^x(sint)/t dt ,x >0, then

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .