Home
Class 12
MATHS
Order and degree of the differential equ...

Order and degree of the differential equation
`(d^(2)y)/(dx^(2))+((dy)/(dx))^((1)/(3))+x=0` are respectively-

A

2 and 3

B

2 and 12

C

2 and 6

D

2 and 4

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The order of the differential equation (d^(2)y)/(dx^(2))=sqrt(1+((dy)/(dx))^(2)) is

The order and degree of the differential equation [1+((dy)/(dx))^(2)]^((3)/(2))=(d^(2)y)/(dx^(2)) are respectively -

Find the order of the differential equation (d^2y)/(dx^2)-((dy)/(dx))^3+7y = x .

The degree of the differential equation (d^3y)/(dx^3)+y=root3(1+(dy)/(dx)) is

The degree of the differential equation (d^3y)/(dx^3) + x((dy)/(dx))^4 = 4((d^4y)/(dx^4))

The degree and order of the differential equation y =x((dy)/(dx))^(2) + ((dx)/(dy))^(2) are respectively:

Write the order and degree of the differential equation ((d^2y)/(dx^2))^3-((dy)/(dx))^4+5y = x .

If the order and degree of the differential equation sqrt((dy)/(dx))-4 (dy)/(dx)-7x=0 are m and n respectively, then -

The degree of the differential equation (d^3y)/(dx^3)+y=root(3)(1+(dy)/(dx)) is

The degree of the differential equation ((dy)/(dx))^(2) - 2 (dy)/(dx)= 3x is -