Home
Class 12
MATHS
If y=acos(logx)+bsin(logx), show, that, ...

If y=acos(logx)+bsin(logx), show, that,
`x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = a cos(logx) + b sin(log x) , show that, x^2(d^2y)/(dx^2)+x(dy)/(dx) + y = 0

Putting logx=z show that, x^2(d^2y)/(dx^2)=(d^2y)/(dz^2)-dy/dz .

If logy=sin^-1x , show that, (1-x^2)(d^2y)/(dx^2)=xdy/dx+y .

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx) =0 .

If y=cos(2sin^(-1)x) , then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+4y=0

Solve ((dy)/(dx))^2-x(dy)/(dx)+y=0

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

IF y=xsin(logx)+xlogx, Prove that, x^2(d^2y)/(dx^2)-xdy/dx+2y=2xlogx

If y=e^(acos^-1x)(-1lexle1) , show that , (1-x^2)(d^2y)/(dx^2)-xdy/dx-a^2y=0

If y=3cos(logx)+4sin(logx), Prove that x^2y_2+xy_1+y=0