Home
Class 12
MATHS
If f(x)is integrable function in the int...

If f(x)is integrable function in the interval `[-a,a]` then show that `int_(-a)^(a)f(x)dx=int_(0)^(a)[f(x)+f(-x)]dx.`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(na)f(x)dx=nint_(0)^(a)f(x)dx if-

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.

Prove that, int_(a)^(b)f(a+b-x)dx=int_(a)^(b)f(x)dx .

Show : int_(a)^(b)f(kx)dx=(1)/(k)int_(ka)^(kb)f(x)dx

If f(2a-x)=-f(x) , then show that, int_(0)^(2a)f(x)dx=0

If int_(a)^(b)f(x)dx=int_(a)^(b)phi(x)dx , then-

If f(x) is an odd function of x, then show that, int_(-a)^(a)f(x)dx=0 .

Evaluate:If f(a-x)=f(x), then show that int_0^axf(x)dx=a/2int_0^af(x)dx

If f(x) is periodic function of period t show that int_(a)^(a+t)f(x)dx is independent of a.