Home
Class 12
MATHS
If f(x)=(|x-2|+|x-4|), then evaluate int...

If `f(x)=(|x-2|+|x-4|)`, then evaluate `int_(1)^(4)f(x)dx`.

Text Solution

Verified by Experts

The correct Answer is:
7
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|+|x+1| , then evaluate int_(-2)^(2)f(x)dx .

Evaluate: int(x^4)/(x-1)dx

If f(x)=|x-1| , then the value of int_(0)^(2)f(x) dx is -

evaluate: int1/((x^2+1)(x^2+4))dx

Let y=f(x)=4x^(3)+2x-6 , then the value of int_(0)^(2)f(x)dx+int_(0)^(30)f^(-1)(y)dy is equal to _________.

If f(-x)=-f(x) , then the value of int_(-a)^af(x)dx is equal to

Evaluate: int(x^2-1)/(x^4-1)dx

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(agt0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

If f(2a-x)=-f(x) , then show that, int_(0)^(2a)f(x)dx=0

If int_(-1)^(4)f(x)dx=4 and int_(2)^(4){3-f(x)}dx=7 then the value of int_(-1)^(2)f(x)dx is