Home
Class 12
MATHS
If x=log(1+t^(2)),y=t-tan^(-1)t, find (d...

If `x=log(1+t^(2)),y=t-tan^(-1)t`, find `(dy)/(dx)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2) and y=log t , find (dy)/(dx) .

If x= t log t,y = (log t)/t , find (dy)/(dx) when t=1

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If y=(1-x)tan(x/2) , then find dy/dx

If y = log{sinsqrt(x^2+1)} find (dy)/(dx)

If y=sqrt(log{sin((x^2)/3-1)}) , t h e n find (dy)/(dx)dot

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=sqrt( a^(sin^(-1)t)) and y=sqrt( a^(cos^(-1)t)) find dy/dx

If x=sin t sqrt(cos2t) and y=cos tsqrt(sin2t) , find (dy)/(dx) at t=(pi)/(4) .