Home
Class 12
MATHS
Find (dy)/(dx) where x=cos^(-1)(8t^(4)-8...

Find `(dy)/(dx)` where `x=cos^(-1)(8t^(4)-8t^(2)+1)` and `y=sin^(-1)(3t-4t^(3)),[0lt t lt(1)/(2)]`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) when : x=cos^(-1)(8t^(4)-8t^(2)+1) , y=sin^(-1)(3t-4t^(3))[0 lt t lt (1)/(2)]

Find (dy)/(dx) where x= cos^(-1)(8t^4-8t^2+1) y =sin^(-1)(3t-4t)^3,[0

Find (dy)/(dx) if:- x = sin t,y= cos t

Find (dy)/(dx) when : x=a(cos t+"log tan"(t)/(2)), y=a sin t

Find (dy)/(dx) if:- x = 2t,y= t^3

Find (dy)/(dx) if:- x = cos t,y= tan t

Find (dy)/(dx) when : x=a(2t+sin2t), y=a(1-cos2t)

Find (dy)/(dx) when : tan y=(2t)/(1-t^(2)), sin x=(2t)/(1+t^(2))

Find (dy)/(dx) if:- x = - sin t,y= cos t

Find (dy)/(dx) when : x=a(t-sin t), y=a(1-cos t)" at " t=(pi)/(2)