Home
Class 12
MATHS
Solve : (1+y^(2))dx=(tan^(-1)y-x)dy, giv...

Solve : `(1+y^(2))dx=(tan^(-1)y-x)dy`, given that `y=0` when x = -1.

Text Solution

Verified by Experts

The correct Answer is:
`x=tan^(-1)y-1-e^(-tan^(-1)y)`
Promotional Banner

Similar Questions

Explore conceptually related problems

SolveL (1+y)^2dx=(tan^(-1)y-x)dy , given that y= 0 when x= -1.

Solve: (1+x^2)(dy)/(dx) = y+tan^(-1)x

answer the foll. Question: (iii) solve : x dy/dx = y+x tan (y/x) , given that y=pi/2 , when x=1.

Solve x(dy)/(dx)=y+x tan(y/x) , given that y=(pi)/(2) , when x=1.

(dy)/(dx)=(x+y)^(2) , given that y=1, when x=0

Solve: (xy^(2)-e^((1)/(x^(3))))dx-x^(2)y dy=0 , given y=0, when x=1

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

Find a particular solution of the differential equation (x + 1)(dy)/(dx) = 2e^(-y) - 1 , given that y = 0 when x = 0.

(1+x^(2)) dy/dx + 2xy = 4x^(2), given y = 0 , when x = 0

Solve log((dy)/(dx))=4x-2y-2 , given that y=1 when x=1.