Home
Class 12
MATHS
If siny=x sin(a+y), prove that, (dy)/(dx...

If `siny=x sin(a+y)`, prove that, `(dy)/(dx)=(sin a)/(1-2x cos a +x^(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If siny = x sin(a+y) then show that (dy)/(dx)= (sina)/(1-2xcos a+x^2) .

(dy)/(dx)=sin(x+y)

If sin y = x sin(a+y), than prove that dy/dx=(sin^2(a+y))/sina

(dy)/(dx)=(sin2y)/(x+tany)

If siny=x sin(a+y) , then the value of (dy)/(dx) is -

(dy)/(dx)=sin(x+y)+cos(x+y)

Solve: (dy)/(dx) = (siny+x)/(sin2y-xcosy)

If cosy=x cos(a+y)," prove that " (dy)/(dx) =(cos^(2)(a+y))/(sin a) , where a ne 0 is a constant .

Find (dy)/(dx) : y = (1)/(sin x cos x )

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0