Home
Class 12
MATHS
The value of the integral int((pi)/(6))^...

The value of the integral `int_((pi)/(6))^((pi)/(2))((1+sin2x+cos2x)/(sinx+cosx))dx` is equal to-

A

16

B

8

C

4

D

1

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(pi/6)^(pi/2) ((1 + sin 2x + cos 2x)/(sin x + cosx)) dx is

The value of the integral int_((pi)/(6))^((pi)/(3))((sinx-xcosx))/(x(x+sinx))dx is equal to-

The value of the integral int_(-(pi)/(7))^((pi)/(7))x^(3)sin^(2)x dx is -

The value of the integral int_(0)^((pi)/(2))|sinx-cosx|dx is -

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the integral int_(0)^((pi)/(4))(sinx+cosx)/(3+sin2x)dx is equal to-

The value of the integral int_(pi)^(10pi) |sinx|dx is equal to -

The value of the integral int_(-pi/2)^(pi/2) (x^2 + In(pi + x)/(pi - x))cos x dx is

int_(0)^((pi)/(2))(cosx-sinx)/(1+sinxcosx)dx

The value of int_(0)^((pi)/(2)) ((sinx+cosx)^(2))/(sqrt(1+sin2x))dx is equal to -