Home
Class 12
MATHS
The vaue of the integral int(0)^((pi)/(2...

The vaue of the integral `int_(0)^((pi)/(2))(1)/(1+(tanx)^(101))dx` is equal to -

A

1

B

`(pi)/(6)`

C

`(pi)/(8)`

D

`(pi)/(4)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The valueof the integral int_(0)^((pi)/(2)) (1)/(1+(tanx)^(101))dx is equal to

The value of the integral int_0^(pi/2) 1/(1 + (tanx)^101) dx is equal to

int_(0)^((pi)/(2))(dx)/(1+cosx)

int_(0)^((pi)/(4))(dx)/(1+sinx)

Statement-I : The value of the integral int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tanx)) is equal to (pi)/(6) . Statement-II : int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

The value of the integral int_(0)^((pi)/(4))(sinx+cosx)/(3+sin2x)dx is equal to-

The value of the integral int_(0)^(2)|x^(2)-1|dx is

int_(0)^((pi)/(2))log(tanx)dx=0

The value of int_(0)^((pi)/(2))sin2x log(tanx)dx is equal to -

Statement - 1 : The value of the integral int_(pi/6)^(pi/3) dx/(1 + sqrttanx) is equal to pi/6 Statement-2 : int_a^b f(x) = int_a^b f(a + b - x) dx