Home
Class 12
MATHS
The value of the integral int(0)^((pi)/(...

The value of the integral `int_(0)^((pi)/(4))(sinx+cosx)/(3+sin2x)dx` is equal to-

A

`log_(e)2`

B

`log_(e)3`

C

`(1)/(4)log_(e)2`

D

`(1)/(4)log_(e)3`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_0^(pi/4) (sin x + cos x)/(3 + sin 2x) dx is equal to

The value of the integral int_(0)^((pi)/(2))|sinx-cosx|dx is -

int(2sinx)/(3+sin2x)dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the integral int_((pi)/(6))^((pi)/(3))((sinx-xcosx))/(x(x+sinx))dx is equal to-

The value of int_(0)^((pi)/(2)) ((sinx+cosx)^(2))/(sqrt(1+sin2x))dx is equal to -

int_(0)^(pi)(dx)/(3+2sinx+cosx)

The value of the integral int_(-(pi)/(7))^((pi)/(7))x^(3)sin^(2)x dx is -

int_(0)^((pi)/(2))(sinx)/(sinx+cosx)dx

The value of the integral int_((pi)/(6))^((pi)/(2))((1+sin2x+cos2x)/(sinx+cosx))dx is equal to-