Home
Class 12
MATHS
Let y=((3^(x)-1)/(3^(x)+1))sinx+log(e)(1...

Let `y=((3^(x)-1)/(3^(x)+1))sinx+log_(e)(1+x),x gt-1`, then at x = 0, `(dy)/(dx)` equals-

A

1

B

0

C

`-1`

D

`-2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let y=((3^x-1)/(3^x+1))sinx+log_e(2+x),xgt-1 . Then at x=0 dy/dx equals

If y=log(1+4x) +x , then find dy/dx

If y=(1)/(3x-1) , then the value of [(dy)/(dx)]_(x=0) is -

If y="cosec"^(-1)((x+1)/(x-1))+cos^(-1)((x-1)/(x+1)) , then (dy)/(dx) is equal to -

If f(x) = log_e ((1-x)/(1+x)) , then f' (0) is

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

Let 5f(x)+3f((1)/(x))=x + 2 and y = x f (x) . Then , (dy)/(dx) is equal to -

If y=(1+x^2)/(1+x) ,then dy/dx at x=0 is

If y=sec(tan^(-1)x)," then "(dy)/(dx)" at "x=1 is equal to-

If y=f((2x-1)/(x^2+1)) and f^'(x)=sinx^2 , then find (dy)/(dx)