Home
Class 12
MATHS
For -(pi)/(2)lt xlt(3pi)/(2), the value ...

For `-(pi)/(2)lt xlt(3pi)/(2)`, the value of `(d)/(dx){tan^(-1)""(cosx)/(1+sinx)}` is equal to-

A

`(1)/(2)`

B

`-(1)/(2)`

C

1

D

`(sinx)/((1+sinx)^(2))`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

For -(pi)/(2) lt x lt (3pi)/(2) the value of (d)/(dx){"tan"^(-1)(cosx)/(1+sinx)} is equal to

For -pi/2ltxlt(3pi)/2 , the value of d/dx{tan^(-1)"cosx/(1+sinx)} is equal to

The value of (d)/(dx) [ tan^(-1){(sqrt(x) (3-x))/(1-3x)}] is -

The value of int_(-pi/2)^(pi/2) (x^2cosx)/(1+e^x) dx is equal to

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

The value of int_(-pi)^(pi) (2x(1+sinx))/(1+cos^(2)x)dx is equal to -

The value of int_((pi)/(4))^((3pi)/(4))(dx)/(1+cosx) is -

The value of int_(0)^((pi)/(2)) ((sinx+cosx)^(2))/(sqrt(1+sin2x))dx is equal to -

The value of the integral int_(0)^((pi)/(4))(sinx+cosx)/(3+sin2x)dx is equal to-

The value of int_(0)^((pi)/(2)) (2^(sinx)dx)/(2^(sinx)+2^(cosx)) is equal to -