Home
Class 12
MATHS
The sum of the series 1+(1)/(2)""^(n)C...

The sum of the series
`1+(1)/(2)""^(n)C_(1)+(1)/(3)""^(n)C_(2)+…+(1)/(n+1)""^(n)C_(n)` is equal to-

A

`(2^(n+1)-1)/(n+1)`

B

`(3(2^(n)-1))/(2n)`

C

`(2^(n)+1)/(n+1)`

D

`(2^(n)+1)/(2n)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (""^(n) C_(1)+2. ""^(n) C_(2)+3. ""^(n)C_(3)+…+ n""^(n)C_(n)) is-

If (2lerlen) , then ""^(n)C_(r)+2.""^(n)C_(r+1)+""^(n)C_(r+2) is equal to

Find the sum of the series .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1).^(n)C_(n)x^(n) and hence show that , .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1)^(n)C_(n)=(n+2)2^(n-1)

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Let S=(2)/(1)""^(n)C_(0)+(2^(2))/(2)""^(n)C_(1)+(2)/(3^(3))""^(n)C_(2)+…+(2^(n+1))/(n+1)""^(n)C_(n) . Then S equals-

(n+2)C_0(2^(n+1))-(n+1)C_1(2^(n))+(n)C_2(2^(n-1))-.... is equal to

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n)