Home
Class 12
MATHS
The value of underset(n to oo)lim((n!)^(...

The value of `underset(n to oo)lim((n!)^((1)/(n)))/(n)` is -

A

1

B

`(1)/(e^(2))`

C

`(1)/(2e)`

D

`(1)/(e)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : underset(n to oo)lim(n)/((n!)^((1)/(n)))

Evaluate : underset(n to oo) lim[(1)/(n)+(1)/(n+1)+(1)/(n+2)+…+(1)/(4n)]

Evaluate : underset(n to oo) lim[(1)/(n)+(1)/(n+1)+(1)/(n+2)+…+(1)/(3n)]

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n)e^((r)/(n)) is -

Evaluate : underset(n to oo)lim [((2n)!)/(n!n^(n))]^((1)/(n))

The value of underset(n to oo)lim[(sqrt(n+1)+sqrt(n+2)+…+sqrt(2n-1))/(n^((3)/(2)))]

The value of lim_(n to oo) [(n!)/(n^(n))]^((1)/(n)) is equal to -

Evaluate : underset(n to oo) lim[(1+(1)/(n))(1+(2)/(n))(1+(3)/(n))…(1+(n)/(n))]^((1)/(n))

The value of Lim_(n to oo) n!/((n+1)!-n!)

The value of lim_(ntooo)(e^(n))/((1+(1)/(n))^(n^(2))) is