Home
Class 12
MATHS
If f(x) and g(x) are twice differentiabl...

If f(x) and g(x) are twice differentiable functions on (0, 3) satisfying `f''(x)=g''(x), f'(1)=4,g'(1)=6,f(2)=3,g(2)=9," then "f(1)-g(1)` is -

A

4

B

`-4`

C

0

D

`-2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x), g(x) be twice differentiable functions on [0,2] satisfying f''(x) = g''(x) , f'(1) = 2g'(1) = 4 and f(2) = 3 g(2) = 9 , then f(x)-g(x) at x = 4 equals (A) 0 (B) 10 (C) 8 (D) 2

f(x) and g(x) are two differentiable functions on [0, 2] such that f''(x)-g''(x)=0, f'(1)=2, g'(1)=4, f(2)=3 and g(2)=9 , then [f(x)-g(x)] at x=(3)/(2) is equal to -

If f and g are differentiable functions in [0, 1] satisfying f(0)=2=g(1),g(0)=0" and "f(1)=6 , then for some c in [0,1] -

If f(x) and g(x) are differentiable functions for 0lexle1 such that f(0)=2,g(0)=0,f(1)=6,g(1)=2, then in the interval (0,1)

If f is a twice differentiable function such that f''(x)=-f(x),f'(x)=g(x) ,h(x)=[f(x)]^2+[g(x)]^2 if h(5)=11, then h(10) equals

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0 for a l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d) none of these

If f(x) and g(x) are differentiable function for 0lexle1 such that f(0)=2,g(0)=0,f(1)=6,g(1)=2 , then show that these exist c satisfying 0ltclt1andf'(c)=2g'(c)

If f(x)=(e^(x))/(g(x)),g(0)=6,g'(0)=2 , then f'(0) is

Let f(x)=x^(2) and g(x)=2x+1 be two real functions. Find (f+g) (x), (f-g) (x), (fg) (x), (f/g) (x) .

Let f be a twice differentiable function such that f"(x) = -f(x) , and f'(x) = g(x) , h(x)=[f(x)]^2+[g(x)]^2 Find h(10), if h(5) = 11