Home
Class 12
MATHS
underset(x to0)lim(pi^(x)-1)/(sqrt(1+x)-...

`underset(x to0)lim(pi^(x)-1)/(sqrt(1+x)-1)`

A

does not exist

B

equals `log_(e)(pi^(2))`

C

equals 1

D

lies between 10 and 11

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) (pi^(x)-1)/(sqrt(1+x)-1)

underset(xrarr1)"lim"(x-1)/(sqrt(x)-1)= ?

Show that, underset(x to 1) lim (x^(x)-1)/(x log x)=1

If K^(2)=underset(xrarr0)"lim"((x)/(sqrt(1+x)-sqrt(1-x))) , then the value of K will be -

underset (xto0) lim(sqrt(1-x^2)-sqrt(1+x^2))/x^2

underset(x to1)lim((1+x)/(2+x))^((1-sqrt(x))/(1-x))

Evaluate the following limits : underset(xrarr1)"lim"(x^(2)-1)/(sqrt(3x+1)-sqrt(5x-1))

underset(xrarr0)"lim"(a^(2x)-1)/(x) =

underset(xrarr0)"lim"(e^(3x)-1)/(x) =

Evaluate the limit: underset(x to0)lim(e^(2x)+e^(-x)-2)/(x)