Home
Class 12
MATHS
The value of I=int(0)^((pi)/(4))(tan^(n+...

The value of `I=int_(0)^((pi)/(4))(tan^(n+1)x)dx+(1)/(2)int_(0)^((pi)/(2))tan^(n-1)((x)/(2))dx` is equal to-

A

`(1)/(n)`

B

`(n+2)/(2n+1)`

C

`(2n-1)/(n)`

D

`(2n-3)/(3n-2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of int_(0)^(2pi)1/(1+tan^(4)x)dx

The value of int_(0)^((pi)/(2))log(tan x)dx is equal to -

int_0^1 tan^(-1) ((2x-1)/(1+x-x^2)) dx is equal to

The value of int_(0)^((pi)/(2))(dx)/(1+cotx ) is -

The value of int_0^(pi/2)dx/(1+tan^3x) is

find the value of int_0^((pi)/(2))(dx)/(1+tan^(4)x)

int_(0)^((pi)/(2))(dx)/(1+cosx)

Find the values of: int_(0)^((pi)/(4))sqrt(1-sin2x)dx

int_(0)^(1)"tan"^(-1)(2x-1)/(1+x-x^(2))dx

int_(0)^((3pi)/(4))(sinxdx)/(1+cos^(2)x)=(pi)/(4)+tan^(-1)((1)/(sqrt(2)))