Home
Class 12
MATHS
The value of the integral int(1)^(2)e^(x...

The value of the integral `int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx` is-

A

`e^(2)(1+log_(e)2)`

B

`e^(2)-e`

C

`e^(2)(1+log_(e)2)-e`

D

`e^(2)-e(1+log_(e)2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_0^1e^(x^2)dx

The value of the integral int_(1)^(e ) (log x)^(2)dx is -

The value of the integral int_(e^(-1))^(e^2)|((log)_e x)/x| dx is (A) 3/2 (B) 5/2 (C) 3 (D) 5

The value of the integral int_(-a)^(a)(xe^(x^(2)))/(1+x^(2))dx is

The value of the integral int_0^(log5)(e^xsqrt(e^x-1))/(e^x+3)dx

The value of integral int_(-1)^(1)(|x+2|)/(x+2)dx is

The value of the integral int_(-1)^(1){(x^(2015))/(e^(|x|)(x^(2) + cos x)) + (1)/(e^(|x|))} dx is equal to

The value of the integral int_(-2)^(2)(1+2 sinx)e^(|x|)dx is equal to

The value of the integral int_(-1)^(+1){(x^(2013))/(e^(|x|)(x^(2)+cos x))+(1)/(e^(|x|))}dx is equal to

The value of the integral int_ _(1+2sinx)e^(x)dx is equal to-