Home
Class 12
MATHS
Let f(x)=sinx+2cos^(2)x,(pi)/(4)lexle(3p...

Let `f(x)=sinx+2cos^(2)x,(pi)/(4)lexle(3pi)/(4)`. Then f attains its-

A

minimum at `x=(pi)/(4)`

B

maximum at `x=(pi)/(2)`

C

minimum at `x=(pi)/(2)`

D

maximum at `x=sin^(-1)((1)/(4))`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sinx+2cos^2x,pi/4lexle(3pi)/4 . then f attains its

Let f(x)=sin^(4)x-cos^(4)x int_(0)^((pi)/(2))f(x)dx =

Let f(x) = |x|+|sin x|, x in (-pi/2, (3pi)/2) . Then, f is :

Verify the truth of Rolle's theorem for the functions: f(x)=cos^(2)x" in " -(pi)/(4) le x le (pi)/(4)

Let f(x)=e^(cos^-1sin(x+pi/3)) , then

Let f(x)= (1-tanx)/(4x-pi) when 0 le x le (pi)/(2) and x ne (pi)/(4) , if f(x) is continuous at x=(pi)/(4) , then the value of f((pi)/(4)) is -

Show that the function f(x) =sin^(4)x+cos^(4)x is increasing in (pi)/(4) lt x lt (3pi)/(8) .

f(x)=cos^2x+cos^2(pi/3 +x)-cosxcos(pi/3 +x) is

cos ((3pi)/( 4) + x) - cos((3pi)/( 4) -x) =- sqrt2 sin x

Let f(x)={{:((1-sin^(3)x)/(3cos^(2)x),"if "x lt(pi)/(2)),(a,"if "x=(pi)/(2)),((b(1-sinx))/((pi-2x)^(2)),"if "x gt(pi)/(2)):}" ," if f (x) is continuous at x=(pi)/(2) , find a and b .