Home
Class 12
MATHS
Let exp(x) denotes the exponential funct...

Let exp(x) denotes the exponential function `e^(x)`. If `f(x)=exp(x^((1)/(x))),x gt0`, then the minimum value of f in the interval [2, 5] is-

A

`"exp"(e^((1)/(e)))`

B

`"exp"(2^((1)/(2)))`

C

`"exp"(5^((1)/(5)))`

D

`"exp"(3^((1)/(3)))`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let exp(x) denote exponential function e^x . If f(x)=exp(x^(1/x)).xgt0 then the minimum value of f in the interval [2,5] is

Let f(x) = x^(3) e^(-3x) , x gt 0 . Then the maximum value of f(x) is:

If f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2 , then the value of f^(-1)(x) is -

Let f (x+(1)/(x))= x^(2) +(1)/(x^(2)) , x ne 0, then the value of f (x) is-

The minimum value of the function f(x)=x^(2)-x+2 is -

If the function f(x)=x^(3)+e^((x)/(2)) and g(x)=f^(-1)(x) , then the value of g'(1) is

The minimum value of the function f(x)=2|x-1|+|x-2| is -

The minimum value of the function f(x)=2|x-1|+|x-2| is

Let f(x)=inte^x(x-1)(x-2)dx , then f(x) decreases in the interval

Let f(x)=2 cosec 2x + sec x+cosec x , then the minimum value of f(x) for x in (0,pi/2) is