Home
Class 12
MATHS
The value of the integral int((pi)/(6))^...

The value of the integral `int_((pi)/(6))^((pi)/(3))((sinx-xcosx))/(x(x+sinx))dx` is equal to-

A

`log_(e)""((2(pi+3))/(2pi+3sqrt(3)))`

B

`log_(e)""((pi+3)/(2(2pi+3sqrt(3))))`

C

`log_(e)""((2pi+3sqrt(3))/(2(pi+3)))`

D

`log_(e)""((2(2pi+3sqrt(3)))/(pi+3))`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_((pi)/(6))^((pi)/(2))((1+sin2x+cos2x)/(sinx+cosx))dx is equal to-

The value of the integral int_(0)^((pi)/(2))|sinx-cosx|dx is -

The value of the integral int_(-(pi)/(7))^((pi)/(7))x^(3)sin^(2)x dx is -

Statement-I : The value of the integral int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tanx)) is equal to (pi)/(6) . Statement-II : int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

The value of the integral int_(0)^((pi)/(4))(sinx+cosx)/(3+sin2x)dx is equal to-

Evaluate the definite integrals int_(pi/6)^(pi/3)(sinx+cosx)/(sqrt(sin2x))dx

The value of the integral int_(pi/6)^(pi/2) ((1 + sin 2x + cos 2x)/(sin x + cosx)) dx is

The value of the integral int_(-(3pi)/4)^((5pi)/4)((sinx+cosx)/(e^(x-pi/4)+1))dx (A) 0 (B) 1 (C) 2 (D) none of these

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

Let I=int_((pi)/(4))^((pi)/(3))(sinx)/(x)dx . Then