Home
Class 12
MATHS
The limit of [(1)/(x^(2))+((2013)^(x))/(...

The limit of `[(1)/(x^(2))+((2013)^(x))/(e^(x)-1)-(1)/(e^(x)-1)]` as `xto0`

A

approaches `+oo`

B

approaches `-oo`

C

is equal to `log_(e)(2013)`

D

does not exist

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The limit of [1/x^2+(2013)^x/(e^x-1)-1/(e^x-1)] as xrarr0

lim _(xto0) (a ^(x) -b^(x))/(e ^(x)-1)

Evaluate lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

lim_(xto0+)(e^x+x)^((1)/(x))

The limit of x sin((1)/(e^(x))) as x rarr 0

The value of lim _(xto0) (2^(x)-1)/(sqrt(1+x)-1) is-

The value of the integral int_(-1)^(+1){(x^(2013))/(e^(|x|)(x^(2)+cosx))+(1)/(e^(|x|))}dx

The value of the integral int_(-1)^(+1){(x^(2013))/(e^(|x|)(x^(2)+cos x))+(1)/(e^(|x|))}dx is equal to

Show that : lim_(xto0)[(1)/(x)-(log(1+x))/(x^(2))]=(1)/(2)