Home
Class 12
MATHS
Let f(x) be a differentiable function an...

Let f(x) be a differentiable function and `f'(4)=5`. Then `underset(x to2)lim(f(4)-f(x^(2)))/(2(x-2))` equals-

A

0

B

5

C

20

D

`-20`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function and f'(4)=5 . Then lim_(x to 2) (f(4) -f(x^(2)))/(x-2) equals

Let f(x) be a differentiable function and f'(4)=5 . Then lim_(xrarr2)(f(4)-f(x^2))/(x-2) equals

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

If f (x) is differentiable and f'(4) =5, then the vlaue of lim_(xto2) (f(4) -f(x^(2)))/(x-2) is equal to-

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

If f(2)=4,f'(2)=4 , then value of underset(x to 2)lim(xf(2)-2f(x))/(2(x-2)) is -

Let f(x)=x^(3)-9x^(2)+30x+5 be a differentiable function of x , then -

If f(x) is a differentiable function in the interval (0, oo) such that f(1)=1 and underset(t to x)lim(t^(2)f(x)-x^(2)f(t))/(t-x)=1 , for each x gt 0 then f((3)/(2)) is equal to

Let f(2) =4and f '(2) =4, then lim _(xto2)(x f(2) -2f(x))/(x-2) is equal to-

If f(2)=4,f'(2)=4, then value of underset(x rarr 2)lim(xf(2)-2f(x))/(x-2) is