Home
Class 12
MATHS
If I=int(0)^(2)e^(x^(4))(x-alpha)dx=0, t...

If `I=int_(0)^(2)e^(x^(4))(x-alpha)dx=0`, then `alpha` lies in the interval-

A

`(0,2)`

B

`(-1,0)`

C

`(2,3)`

D

`(-2,-1)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)2e^(x)dx

int_(0)^(1)e^(-x)dx

int_(0)^(1)x^(2)e^(-x)dx

int_(-a)^(a)(xe^(x^(4)))/(1+x^(2))dx=0

int_(0)^(1)e^(2x)e^(e^(x) dx

If int_0^1 e^(x^2)(x-alpha)dx=0 , then (a) alphalt2 (b) alphalt0 (c)"" 0ltalphalt1 (d) alpha="0

Evaluate int_(0)^(2)e^(x)dx .

int_0^(100)e^(x-[x])dx=

int_(0)^(1)(dx)/(e^(x)+e^(-x))

int_(0)^(1)(dx)/(e^(x)+e^(-x))