Home
Class 12
MATHS
Suppose M=int(0)^((pi)/(2))(cosx)/(x+2)d...

Suppose `M=int_(0)^((pi)/(2))(cosx)/(x+2)dx,N=int_(0)^((pi)/(4))(sinxcosx)/((x+1)^(2))dx.` Then the value of (M - N) equals-

A

`(3)/(pi+2)`

B

`(2)/(pi-4)`

C

`(4)/(pi-2)`

D

`(2)/(pi+4)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If M=int_0^((pi)/(2))(cosx)/(x+2)dx,N=int_0^((pi)/(4))(sinxcosx)/((x+1)^2)dx , then the value of M-N is

int_(0)^((pi)/(2))(dx)/(1+cosx)

int_(0)^(pi)(dx)/(3+2sinx+cosx)

int_(0)^((pi)/(2))(sinx)/(sinx+cosx)dx

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

Show : int_(0)^((pi)/(2))sinxf(sin2x)dx=int_(0)^((pi)/(2))cosxf(sin2x)dx

int_(0)^((pi)/(2))(cosx-sinx)/(1+sinxcosx)dx

int_(0)^((pi)/(2))(dx)/(4+5cosx)=(1)/(3)log2

Evaluate int_0^(pi/2)(cosx)/(1+sinx)^2dx