Home
Class 12
MATHS
Let f(x)="max"{x+|x|,x-[x]}, where [x] d...

Let `f(x)="max"{x+|x|,x-[x]}`, where [x] denotes the greatest integer `lex`. Then the value of `int_(-3)^(3)f(x)dx` is-

A

0

B

`(51)/(2)`

C

`(21)/(2)`

D

1

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

[x] denote the greatest integer function. The value of int_(1)^(a)[x]f^(')(x)dx,agt1 is-

If [x] denotes the greatest integer lex and n inN then value of I_n=int_0^(n^2) [sqrtx]dx is

Let f(x)={1+|x|,x<-1 [x],xgeq-1 , where [.] denotes the greatest integer function. The find the value of f{f(-2.3)}dot

[x] denotes the greatest integer, less than or equal to x, then the value of the integral int_(0)^(2)x^(2)[x]dx equals

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Let f(x) = (x^2-9x+20)/(x-[x]) where [x] denotes greatest integer less than or equal to x ), then

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is

Let f(x) denote the fractional part of a real number x. Then the value of int_(0)^(sqrt(3))f(x^(2))dx is-

Let f(x)=[sinx + cosx], 0ltxlt2pi , (where [.] denotes the greatest integer function). Then the number of points of discontinuity of f(x) is :