Home
Class 12
MATHS
Let S=(2)/(1)""^(n)C(0)+(2^(2))/(2)""^(n...

Let `S=(2)/(1)""^(n)C_(0)+(2^(2))/(2)""^(n)C_(1)+(2)/(3^(3))""^(n)C_(2)+…+(2^(n+1))/(n+1)""^(n)C_(n)`. Then S equals-

A

`(2^(n+1)-1)/(n+1)`

B

`(3^(n+1)-1)/(n+1)`

C

`(3^(n)-1)/(n)`

D

`(2^(n-1))/(n)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series 1+(1)/(2)""^(n)C_(1)+(1)/(3)""^(n)C_(2)+…+(1)/(n+1)""^(n)C_(n) is equal to-

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

Let a=3^(1//224)+1 and for all n ge 3 , let f(n)=""^(n)C_(0)a^(n-1)-""^(n)C_(1)a^(n-2)+""^(n)C_(2)a^(n-3)+...+(-1)^(n-1)*""^(n)C_(n-1)*a^(0). If the value of f(2016)+f(2017)= 3^(k) , the value of K is

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n)

(n+2)C_0(2^(n+1))-(n+1)C_1(2^(n))+(n)C_2(2^(n-1))-.... is equal to

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

Evaluate .^(n)C_(0).^(n)C_(2)+.^(n)C_(1).^(n)C_(3)+.^(n)C_(2).^(n)C_(4)+"...."+.^(n)C_(n-2).^(n)C_(n) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .