Home
Class 12
MATHS
underset(n to oo)lim(sqrt(1)+sqrt(2)+…+s...

`underset(n to oo)lim(sqrt(1)+sqrt(2)+…+sqrt(n-1))/(nsqrt(n))=`

A

`(1)/(2)`

B

`(1)/(3)`

C

`(2)/(3)`

D

0 (zero)

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of underset(n to oo)lim[(sqrt(n+1)+sqrt(n+2)+…+sqrt(2n-1))/(n^((3)/(2)))]

underset(xto oo)lim(sqrt(x-sqrtx)-sqrtx)

Evaluate (with the help of definite integral) : underset(n to oo)lim[(1)/(sqrt(n))+(1)/(sqrt(2n))+(1)/(sqrt(3n))+…+(1)/(n)]

lim_(nto oo)(sqrt1+sqrt2+......+sqrt(n-1))/(nsqrtn)=

underset(xto oo)lim(sqrt(x+sqrt(x+sqrtx))-sqrtx)

Evaluate : underset(nrarroo)"lim"(sqrt(1+n^(2))-sqrt(1+n))/(sqrt(1+n^(3))-sqrt(1+n))

underset(nrarrinfty)lim (sqrt1+sqrt2+.......+sqrt(n-1))/(nsqrtn) = ?

underset(xto 4)lim(sqrt(1+sqrt(2+sqrtx))-sqrt3)/(x-2)

underset(x to oo) lim (sqrt(x^2+2x+1)-x)

lim_(nto oo)[(sqrt(n+1)+sqrt(n+2)+...+sqrt(2)n)/(sqrt(n^(3)))]