Home
Class 12
MATHS
Let f(x) denote the fractional part of a...

Let f(x) denote the fractional part of a real number x. Then the value of `int_(0)^(sqrt(3))f(x^(2))dx` is-

A

`2sqrt(3)-sqrt(2)-1`

B

0 (zero)

C

`sqrt(2)-sqrt(3)+1`

D

`sqrt(3)-sqrt(2)+1`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) denote the fractional part of a real number x. Then the value of int_0^sqrt3 f(x^2) dx is

If f(x)=|x-1| , then the value of int_(0)^(2)f(x) dx is -

The value of int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to -

Let f(x)="max"{x+|x|,x-[x]} , where [x] denotes the greatest integer lex . Then the value of int_(-3)^(3)f(x)dx is-

Let f(x) be a differentiable function symmetric about x=2 , then the value of int_(0)^(4)cos(pix)f'(x)dx is equal to________.

Let f(n)=[1/2+n/100] where [x] denote the integral part of x. Then the value of sum_(n=1)^100f(n) is

If f(-x)=-f(x) , then the value of int_(-a)^af(x)dx is equal to

Let{x} and [x] denote the fractional and integral parts of a real number x respectively.Solve 4{x}=x+[x]

Let f(x)=min({x},{-x})AA epsilonR , where {.} denotes the fractional part of x . Then int_(-100)^(100) f(x)dx is equal to

Let {x} and [x] denote the fractional and integral parts of a real number x respectively. Solve 4{x}=x+[x] .