Home
Class 12
MATHS
For all real values a(0),a(1),a(2),a(3) ...

For all real values `a_(0),a_(1),a_(2),a_(3)` of satisfying `a_(0)+(a_(1))/(2)+(a_(2))/(3)+(a_(3))/(4)=0`, the equation
`a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)=0` has a real root in the interval

A

`[0,1]`

B

`[-1,0]`

C

`[1,2]`

D

`[-2,-1]`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3), …., a_(n) are in H.P., prove that, a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) +…+ a_(n-1)a_(n) = (n-1)a_(1)a_(n)

a_(1), a_(2),a_(3) in R - {0} and a_(1)+ a_(2)cos2x+ a_(3)sin^(2)x=0 " for all " x in R then

Let (1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+.....+a_(18)x^(18) . Then

Let (1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(18)x^(18) . Then

If a_(1), a_(2), a_(3),…, a_(n) be in A.P. Show that, (1)/(a_(1)a_(2)) + (1)/(a_(2)a_(3)) +….+(1)/(a_(n-1)a_(n)) = (n-1)/(a_(1)a_(n))

If a_(1), a_(2), a_(3),…, a_(40) are in A.P. and a_(1) + a_(5) + a_(15) + a_(26) + a_(36) + a_(40) = 105 then sum of the A.P. series is-

If (x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…." , then sum_(r=1)^(50) a_(r) equal to

If a_(1),a_(2)a_(3),….,a_(15) are in A.P and a_(1)+a_(8)+a_(15)=15 , then a_(2)+a_(3)+a_(8)+a_(13)+a_(14) is equal to

Prove that function y=(x-a_(1))^(2)+(x-a_(2))^(2)+...+(x-a_(n))^(2) is minimum when x=(1)/(n)(a_(1)+a_(2)+...+a_(n)) .

If a_(1), a_(2), a_(3),…, a_(2k) are in A.P., prove that a_(1)^(2) - a_(2)^(2) + a_(3)^(2) - a_(4)^(2) +…+a_(2k-1)^(2) - a_(2k)^(2) = (k)/(2k-1)(a_(1)^(2) - a_(2k)^(2)) .