Home
Class 12
MATHS
If f(x)=tan^(-1)[(log((e)/(x^(2))))/(log...

If `f(x)=tan^(-1)[(log((e)/(x^(2))))/(log(ex^(2)))]+tan^(-1)[(3+2logx)/(1-6logx)]` then the value of `f''(x)` is

A

`x^(2)`

B

x

C

1

D

0

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=tan^(-1)[(log((e )/(x^(2))))/(log (ex^(2)))]+tan^(-1)[(3+2 log x)/(1-6 log x)] then the value of f''(x) is

f(x)=tan^(-1){log(e/x^2)/log(ex^2)}+tan^(-1)((3+2logx)/(1-6logx)) then find (d^ny)/(dx^n)

IF f(x)= log_x(logx) then the value of f'(e) is

IF f(x)= log(tan(x/2)) , then the value of f'(x) is

IF f(x)=log(3x+1), then the value of f'' (1) is-

If f(x)=log("tan"(x)/(2)) , then the value of f'(x) is -

If f(x)=cos^(-1)[(1-(logx)^(2))/(1+(logx)^(2))] , then the value of f'(e ) is -

If f(x) =tan ^(-1)x-(1)/(2)log x . Then -

If int_(log_(e^(2)))^(x)(e^(x)-1)^(-1)dx="log"_(e )(3)/(2) then the value of x is

If int tan^(-1)x dx=xtan^(-1)x+k log(1+x^(2))+C , then the value of k is-