Home
Class 12
MATHS
The value of underset(n to oo)lim[(sqrt(...

The value of `underset(n to oo)lim[(sqrt(n+1)+sqrt(n+2)+…+sqrt(2n-1))/(n^((3)/(2)))]`

A

`(2)/(3)(2sqrt(2)-1)`

B

`(2)/(3)(sqrt(2)-1)`

C

`(2)/(3)(sqrt(2)+1)`

D

`(2)/(3)(2sqrt(2)+1)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(n to oo)lim(sqrt(1)+sqrt(2)+…+sqrt(n-1))/(nsqrt(n))=

The value of underset(n to oo)lim((n!)^((1)/(n)))/(n) is -

lim_(nto oo)[(sqrt(n+1)+sqrt(n+2)+...+sqrt(2)n)/(sqrt(n^(3)))]

Prove : underset(nrarroo)"lim"(sqrt(n+1)-sqrt(n))=0

Evaluate : underset(nrarroo)"lim"(1+sqrt(n))/(1-sqrt(n))

Evaluate : underset(n to oo)lim(n)/((n!)^((1)/(n)))

Evaluate (with the help of definite integral) : underset(n to oo)lim[(1)/(sqrt(n))+(1)/(sqrt(2n))+(1)/(sqrt(3n))+…+(1)/(n)]

Find the value of underset(ntooo)lim[(1)/(sqrt(n^(2)-1^(2)))+(1)/(sqrt(n^(2)-2^(2)))+(1)/(sqrt(n^(2)-3^(2)))+...+(1)/(sqrt(n^(2)-(n-1)^(2)))]

Evaluate : underset(nrarroo)"lim"(sqrt(1+n^(2))-sqrt(1+n))/(sqrt(1+n^(3))-sqrt(1+n))

Evaluate : underset(n to oo) lim[(1)/(n)+(1)/(n+1)+(1)/(n+2)+…+(1)/(3n)]