Home
Class 12
MATHS
If y=sec(tan^(-1)x)," then "(dy)/(dx)" a...

If `y=sec(tan^(-1)x)," then "(dy)/(dx)" at "x=1` is equal to-

A

`(1)/(sqrt(2))`

B

`(1)/(2)`

C

1

D

`sqrt(2)`

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If y="sec"(cos^(-1)x), then (dy)/(dx) at x=1 is equal to: 1/(sqrt(2)) (b) 1/2 (c) -1 (d) sqrt(2)

If y=sec(tan^(-1)x) , then (dy)/(dx) is equal to -

Knowledge Check

  • If y=sec(tan^(-1)x) , then value of dy/dx at x=1 is

    A
    `1/2`
    B
    `1/sqrt2`
    C
    1
    D
    `sqrt2`
  • If y=tan^(-1)((sqrt(1+x^(2))-1)/(x)) and z=tan^(-1)((2x)/(1-x^(2))) , then (dy)/(dz) is equal to -

    A
    `(1)/(8)`
    B
    `(1)/(4)`
    C
    `(1)/(2)`
    D
    1
  • If y=tan^-1((sqrt(1+x^2)-1)/x) , then dy/dx at x = 0 is

    A
    `1/2`
    B
    `1/sqrt2`
    C
    1
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If y=tan^(-1)(x^3) then dy/dx=

    If y=tan^-1((1+x)/(1-x)) then dy/dx=

    If y= tan^(-1)((1-x)/(1+x)) , then (dy)/(dx)|_(x=1)

    " If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx) is equal to

    If tan (x+y) = xy, then find (dy)/(dx)