Home
Class 12
MATHS
Statement-I : The value of the integral ...

Statement-I : The value of the integral `int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tanx))` is equal to `(pi)/(6)` .
Statement-II : `int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx`

A

Statement-I is true, Statement-II is true, Statement-II is a correct explanation for Statement-I.

B

Statement-I is true, Statement-II is true, Statement-II is not a correct explanation for Statement-I.

C

Statement-I is true, Statement-II is false.

D

Statement-I is false, Statement-II is true.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_((pi)/(6))^((pi)/(3)) (dx)/(1+sqrt(tan x)) is equal to -

int_((pi)/(6))^((pi)/(3))(dx)/(1+sqrt(tanx))=(pi)/(12)

Prove that int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx.

Statement - 1 : The value of the integral int_(pi/6)^(pi/3) dx/(1 + sqrttanx) is equal to pi/6 Statement-2 : int_a^b f(x) = int_a^b f(a + b - x) dx

The value of the integral int_((pi)/(6))^((pi)/(3))((sinx-xcosx))/(x(x+sinx))dx is equal to-

int_(-(pi)/(2))^((pi)/(2))(dx)/(1+cot^(4)x)

If int_(a)^(b)f(x)dx=int_(a)^(b)phi(x)dx , then-

The value of the integral int_((pi)/(6))^((pi)/(2))((1+sin2x+cos2x)/(sinx+cosx))dx is equal to-

The vaue of the integral int_(0)^((pi)/(2))(1)/(1+(tanx)^(101))dx is equal to -

The valueof the integral int_(0)^((pi)/(2)) (1)/(1+(tanx)^(101))dx is equal to