Home
Class 12
MATHS
The integral int(0)^(x)sqrt(1+4sin^(2)""...

The integral `int_(0)^(x)sqrt(1+4sin^(2)""(x)/(2)-4sin""(x)/(2))dx` equals-

A

`pi-4`

B

`(2pi)/(3)-4-4sqrt(3)`

C

`4sqrt(3)-4`

D

`4sqrt(3)-4-(pi)/(3)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int_0^pi sqrt(1 + 4 sin^2(x/2) - 4 sin (x/2)) dx equals :

The value of the integral int_(0)^((pi)/(4))(sinx+cosx)/(3+sin2x)dx is equal to-

int_(0)^(2pi)sin^(4).(x)/(2)cos^(5).(x)/(2)dx=0

int_(0)^((1)/(2))(dx)/(sqrt(4-x^(2)))

The integral int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2)))dx is equal to-

Integrate: int (sin x)/(sqrt(1+ sin x))dx

int_(0)^(1)(d)/(dx)["sin"^(-1)(2x)/(1+x^(2))]dx is equal to -

Evaluate the definite integrals int_(0)^(pi)(sin^(2)x/2-cos^(2)x/2)dx

Integrate : int sqrt((sin x- sin^(3)x)/(1-sin^(3) x))dx

Integrate : int sqrt sin x/(cos^(9/2)x)dx