Home
Class 12
MATHS
The integral int(2)^(4)(logx^(2))/(logx^...

The integral `int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2)))dx` is equal to-

A

1

B

6

C

2

D

4

Text Solution

Verified by Experts

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

int_(1)^(e)(logx)^(2)dx

int_(1)^(2)(dx)/(x(1+logx)^(2))

int_(1)^(e)(dx)/(x(1+logx)^(2))

int_(1)^(e)(1+logx)/(x)dx

Integrate : int x^(3)(logx)^(2)dx

int_(1)^(e)(dx)/(x(1+logx))

int_(a)^(b)(logx)/(x)dx=(1)/(2)log(ab)log((b)/(a))

int _(1)^(e )((x+1)^(3))/(x^(2))logx dx

int [(1)/(logx)-(1)/((logx)^(2))]dx

Integrate : int (logx)/((1+logx)^(2))dx