Home
Class 12
MATHS
The integral int(2x^(12)+5x^(9))/((x^(5)...

The integral `int(2x^(12)+5x^(9))/((x^(5)+x^(3)+1)^(3))dx` is equal to

A

`(-x^(5))/((x^(5)+x^(3)+1)^(2))+C`

B

`(x^(5))/(2(x^(5)+x^(3)+1)^(2))+C`

C

`(x^(10))/(2(x^(5)+x^(3)+1)^(2))+C`

D

`(-x^(10))/(2(x^(5)+x^(3)+1)^(2))+C`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(5))/((4x^(2)+ 1)^(4))dx is equal to

int(x^(3)+5x^(2)-4)/(x^(2))dx

The integral int_2^4 (logx^2)/((logx^2)+log(36-12x+x^2)) dx is equal to:

Integrate : int (2x^(2)-3x+9)/(x^(2)+4x-5)

The integral int_(2)^(4)(logx^(2))/(logx^(2)+log(36-12x+x^(2)))dx is equal to-

Integrate: int(2x^2 - 3x+9)/(x^2+4x-5)dx

The integral int(dx)/(x^(2)(x^(4)+1)^((3)/(4))) equals-

I = int (x + x^(2/3) + x^(1/6))/(x (1+x^(1/3))) dx is equal

int (x^2 - 1)/((x^3)sqrt(2x^4- 2x^2 + 1)) dx is equal to

int (x^(2)dx)/(x^(6)-5x^(3)+6)