Home
Class 12
MATHS
underset(n to oo)lim(((n+1)(n+2)...3n)/(...

`underset(n to oo)lim(((n+1)(n+2)...3n)/(n^(2n)))^((1)/(n))` is equal to

A

`(18)/(e^(4))`

B

`(27)/(e^(2))`

C

`(9)/(e^(2))`

D

`3log3-2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(nrarrinfty)lim((n+1)(n+2)....3n)/(n^(2n)))^(1/n) is equal to

Evaluate : underset(n to oo)lim [((2n)!)/(n!n^(n))]^((1)/(n))

The value of lim_(n to oo) [(n!)/(n^(n))]^((1)/(n)) is equal to -

Evaluate : underset(n to oo)lim(n)/((n!)^((1)/(n)))

The value of lim_( n to oo) sum_(r =1)^(n) (r )/(n^(2))"sec"^(2)(r^(2))/(n^(2)) is equal to -

The value of underset(n to oo)lim((n!)^((1)/(n)))/(n) is -

Evaluate : underset(n to oo) lim[(1+(1)/(n))(1+(2)/(n))(1+(3)/(n))…(1+(n)/(n))]^((1)/(n))

Evaluate: lim_(n->oo)(((n+1)(n+2)...(n+n))^(1/n))/n

underset(nrarroo)"lim"(-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to

value of underset(nrarrinfty)lim((n !)/n^n)^(1/n),where n inN is equal to