Home
Class 12
MATHS
If 2int(0)^(1)tan^(-1)xdx=int(0)^(1)cot^...

If `2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx` then `int_(0)^(1)tan^(-1)(1-x-x^(2))dx` is equal to

A

`log4`

B

`(pi)/(2)+log2`

C

`log2`

D

`(pi)/(2)-log4`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)cos^(-1)x dx

int_(0)^(1)x(tan^(-1)x)^(2)dx

int_0^1 tan^(-1) ((2x-1)/(1+x-x^2)) dx is equal to

int_(0)^(1)"tan"^(-1)(2x-1)/(1+x-x^(2))dx

int_(0)^(1) sqrt((1-x)/(1+x))dx is equal to -

Evaluate int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(1)2e^(x)dx

int_(-1)^1(x-abs(2x))dx is equal to

inte^x(tan^-1x+(2x)/((1+x^2)^2))dx is equal to

int_(0)^(1)xe^(-x^(2))dx