Home
Class 12
MATHS
If f(x) is a differentiable function in ...

If f(x) is a differentiable function in the interval `(0, oo)` such that `f(1)=1` and `underset(t to x)lim(t^(2)f(x)-x^(2)f(t))/(t-x)=1`, for each `x gt 0` then `f((3)/(2))` is equal to

A

`(13)/(6)`

B

`(23)/(18)`

C

`(25)/(9)`

D

`(31)/(18)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)t^2f(t)dt , then f((1)/(2)) is equal to

If f(x) is a differentiable function for all x gt 0 and lim_(y to x)(y^(2)f(x)-x^(2)f(y))/(y-x)=2 , then the value of f'(x) is -

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

If f(t) is an odd function, then int_(0)^(x)f(t) dt is -

underset(trarra)lim(int_a^tf(x)dx-((t-a)/2)(f(t)-f(a)))/(t-a)^3

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt , then the value of (23)/(3)f(0) is equal to-

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1) =1 , then

Let f:R to R be a differentiable function and f(1)=4 and f'(1)=2 , then the value of lim_(x to 1) int_(4)^(f(x))(2t)/(x-1)dt is -

if f(x)oversetxunderseto(int)e^(t^2)(t-2)(t-3)dt for all x in(0,oo) , then

If int_(0)^(t^(2)) x f(x) dx=(2)/(5) t^(5) , t gt 0 , then the value of f((4)/(25)) is -